import MyNat.Definition
import MyNat.Addition
import AdditionWorld.Level5 -- succ_eq_add_one
namespace MyNat
open MyNat
Advanced Addition World
Level 12: add_one_eq_succ
We have
succ_eq_add_one (n : MyNat) : succ n = n + 1
but sometimes the other way is also convenient.
Theorem
For any natural number d
, we have d+1 = succ d.
theoremadd_one_eq_succ (add_one_eq_succ: ∀ (d : MyNat), d + 1 = succ dd :d: MyNatMyNat) :MyNat: Typed +d: MyNat1 =1: MyNatsuccsucc: MyNat → MyNatd :=d: MyNatd: MyNatd + 1 = succ dd: MyNatd + 1 = succ dd: MyNatd + 1 = d + 1Goals accomplished! 🐙
Next up Level 13