import MyNat.Definition
import MyNat.Inequality -- le_iff_exists_add
import Mathlib.Tactic.Use -- use tactic
import AdditionWorld.Level6 -- add_right_comm
import AdvancedAdditionWorld.Level1 --  succ_inj
namespace MyNat
open MyNat

Inequality world.

Level 12: le_of_succ_le_succ

Lemma : le_of_succ_le_succ

For all naturals a and b, succ a ≤ succ b ⟹ a ≤ b.

theorem 
le_of_succ_le_succ: ∀ (a b : MyNat), succ a ≤ succ b → a ≤ b
le_of_succ_le_succ
(
a: MyNat
a
b: MyNat
b
:
MyNat: Type
MyNat
) :
succ: MyNat → MyNat
succ
a: MyNat
a
succ: MyNat → MyNat
succ
b: MyNat
b
a: MyNat
a
b: MyNat
b
:=
a, b: MyNat

succ a succ b a b
a, b: MyNat
h: succ a succ b

a b
a, b: MyNat
h: succ a succ b

a b
a, b, c: MyNat
hc: succ b = succ a + c

intro
a b
a, b, c: MyNat
hc: succ b = succ a + c

intro
b = a + c
a, b, c: MyNat
hc: succ b = succ a + c

intro.a
succ b = succ (a + c)
a, b, c: MyNat
hc: succ b = succ a + c

intro.a
succ b = succ (a + c)
a, b, c: MyNat
hc: succ b = succ a + c

intro.a
succ a + c = succ (a + c)
a, b, c: MyNat
hc: succ b = succ a + c

intro.a
succ a + c = succ (a + c)

Goals accomplished! 🐙

Next up Level 13