import MyNat.Definition
import MyNat.Inequality -- le_iff_exists_add
import Mathlib.Tactic.Use -- use tactic
import AdditionWorld.Level6 -- add_right_comm
import AdvancedAdditionWorld.Level1 -- succ_inj
namespace MyNat
open MyNat
Inequality world.
Level 12: le_of_succ_le_succ
Lemma : le_of_succ_le_succ
For all naturals a
and b
, succ a ≤ succ b ⟹ a ≤ b.
theoremle_of_succ_le_succ (le_of_succ_le_succ: ∀ (a b : MyNat), succ a ≤ succ b → a ≤ baa: MyNatb :b: MyNatMyNat) :MyNat: Typesuccsucc: MyNat → MyNata ≤a: MyNatsuccsucc: MyNat → MyNatb →b: MyNata ≤a: MyNatb :=b: MyNata, b: MyNatsucc a ≤ succ b → a ≤ ba, b: MyNat
h: succ a ≤ succ ba ≤ ba, b: MyNat
h: succ a ≤ succ ba ≤ ba, b, c: MyNat
hc: succ b = succ a + c
introa ≤ ba, b, c: MyNat
hc: succ b = succ a + c
introb = a + ca, b, c: MyNat
hc: succ b = succ a + c
intro.asucc b = succ (a + c)a, b, c: MyNat
hc: succ b = succ a + c
intro.asucc b = succ (a + c)a, b, c: MyNat
hc: succ b = succ a + c
intro.asucc a + c = succ (a + c)a, b, c: MyNat
hc: succ b = succ a + c
intro.asucc a + c = succ (a + c)Goals accomplished! 🐙
Next up Level 13