import MyNat.Definition
import MyNat.Addition
import AdvancedAdditionWorld.Level1 -- succ_inj
import AdvancedAdditionWorld.Level10 -- zero_ne_succ
namespace MyNat
open MyNat
Advanced Addition World
Level 13: ne_succ_self
The last level in Advanced Addition World is the statement
that n ≠ succ n
.
Lemma
For any natural number n
, we have n ≠ succ n
.
lemmane_succ_self (ne_succ_self: ∀ (n : MyNat), n ≠ succ nn :n: MyNatMyNat) :MyNat: Typen ≠n: MyNatsuccsucc: MyNat → MyNatn :=n: MyNatn: MyNatn ≠ succ nn: MyNatn ≠ succ n
zerozero ≠ succ zeroGoals accomplished! 🐙n: MyNat
ih: n ≠ succ n
succsucc n ≠ succ (succ n)n: MyNat
ih: n ≠ succ n
hs: succ n = succ (succ n)
succFalsen: MyNat
ih: n ≠ succ n
hs: succ n = succ (succ n)
succn = succ nn: MyNat
ih: n ≠ succ n
hs: succ n = succ (succ n)
succ.asucc n = succ (succ n)Goals accomplished! 🐙
Well that's a wrap on Advanced Addition World !
You can now move on to Advanced Multiplication World (after first doing Multiplication World, if you didn't do it already).