import MyNat.Definition
import MyNat.Inequality -- le_iff_exists_add
import AdvancedAdditionWorld.Level11 -- add_right_eq_zero
namespace MyNat
open MyNat
Inequality world
Level 7: le_zero
We proved add_right_eq_zero
back in advanced addition world.
Remember that you can do things like have h2 := add_right_eq_zero h1
if h1 : a + c = 0
.
Lemma : le_zero
For all naturals a
, if a ≤ 0
then a = 0
.
lemmale_zero (le_zero: ∀ (a : MyNat), a ≤ 0 → a = 0a :a: MyNatMyNat) (MyNat: Typeh :h: a ≤ 0a ≤a: MyNat0) :0: MyNata =a: MyNat0 :=0: MyNata: MyNat
h: a ≤ 0a = 0a: MyNat
h: a ≤ 0a = 0a, c: MyNat
hc: 0 = a + c
introa = 0a, c: MyNat
hc✝: 0 = a + c
hc: a + c = 0
introa = 0Goals accomplished! 🐙
Next up Level 8