import MyNat.Definition
import MyNat.Inequality -- le_iff_exists_add
import Mathlib.Tactic.Use -- use tactic
import AdvancedAdditionWorld.Level11 -- add_right_eq_zero
namespace MyNat
open MyNat
Inequality world.
Level 8: succ_le_succ
Another straightforward one.
Lemma : succ_le_succ
For all naturals a
and b
, if a ≤ b
, then succ a ≤ succ b
.
lemmasucc_le_succ (succ_le_succ: ∀ (a b : MyNat), a ≤ b → succ a ≤ succ baa: MyNatb :b: MyNatMyNat) (MyNat: Typeh :h: a ≤ ba ≤a: MyNatb) :b: MyNatsuccsucc: MyNat → MyNata ≤a: MyNatsuccsucc: MyNat → MyNatb :=b: MyNata, b: MyNat
h: a ≤ bsucc a ≤ succ ba, b: MyNat
h: a ≤ bsucc a ≤ succ ba, b, c: MyNat
hc: b = a + c
introsucc a ≤ succ ba, b, c: MyNat
hc: b = a + c
introsucc b = succ a + ca, b, c: MyNat
hc: b = a + c
introsucc b = succ a + ca, b, c: MyNat
hc: b = a + c
introsucc (a + c) = succ a + ca, b, c: MyNat
hc: b = a + c
introsucc (a + c) = succ a + ca, b, c: MyNat
hc: b = a + c
introsucc (a + c) = succ a + ca, b, c: MyNat
hc: b = a + c
introsucc (a + c) = succ (a + c)Goals accomplished! 🐙
Next up Level 9