import MyNat.Definition
import MyNat.Inequality -- le_iff_exists_add
import Mathlib.Tactic.Use -- use tactic
import AdvancedAdditionWorld.Level11 -- add_right_eq_zero
namespace MyNat
open MyNat

Inequality world.

Level 8: succ_le_succ

Another straightforward one.

Lemma : succ_le_succ

For all naturals a and b, if a ≤ b, then succ a ≤ succ b.

lemma 
succ_le_succ: ∀ (a b : MyNat), a ≤ b → succ a ≤ succ b
succ_le_succ
(
a: MyNat
a
b: MyNat
b
:
MyNat: Type
MyNat
) (
h: a ≤ b
h
:
a: MyNat
a
b: MyNat
b
) :
succ: MyNat → MyNat
succ
a: MyNat
a
succ: MyNat → MyNat
succ
b: MyNat
b
:=
a, b: MyNat
h: a b

succ a succ b
a, b: MyNat
h: a b

succ a succ b
a, b, c: MyNat
hc: b = a + c

intro
succ a succ b
a, b, c: MyNat
hc: b = a + c

intro
succ b = succ a + c
a, b, c: MyNat
hc: b = a + c

intro
succ b = succ a + c
a, b, c: MyNat
hc: b = a + c

intro
succ (a + c) = succ a + c
a, b, c: MyNat
hc: b = a + c

intro
succ (a + c) = succ a + c
a, b, c: MyNat
hc: b = a + c

intro
succ (a + c) = succ a + c
a, b, c: MyNat
hc: b = a + c

intro
succ (a + c) = succ (a + c)

Goals accomplished! 🐙

Next up Level 9