import MyNat.Definition
import MyNat.Addition -- add_zero
import MyNat.Inequality -- le_iff_exists_add
import Mathlib.Tactic.Use -- use tactic
import AdditionWorld.Level2 -- add_assoc
import AdditionWorld.Level3 -- succ_add
import InequalityWorld.Level5 -- le_trans
import InequalityWorld.Level6 -- le_antisymm
import InequalityWorld.Level10 -- le_succ_self
import AdvancedAdditionWorld.Level13 -- ne_succ_self
namespace MyNat
open MyNat
Inequality world.
Level 16: equivalence of two definitions of <
Now let's go the other way.
Lemma : lt_aux₂
For all naturals a
and b
, succ a ≤ b ⟹ a ≤ b ∧ ¬ (b ≤ a)
.
lemmalt_aux₂ (lt_aux₂: ∀ (a b : MyNat), succ a ≤ b → a ≤ b ∧ ¬b ≤ aaa: MyNatb :b: MyNatMyNat) :MyNat: Typesuccsucc: MyNat → MyNata ≤a: MyNatb →b: MyNata ≤a: MyNatb ∧ ¬ (b: MyNatb ≤b: MyNata) :=a: MyNata, b: MyNatsucc a ≤ b → a ≤ b ∧ ¬b ≤ aa, b: MyNat
h: succ a ≤ ba ≤ b ∧ ¬b ≤ aa, b: MyNat
h: succ a ≤ b
lefta ≤ ba, b: MyNat
h: succ a ≤ b¬b ≤ aa, b: MyNat
h: succ a ≤ b
lefta ≤ ba, b: MyNat
h: succ a ≤ b
left.haba ≤ succ aa, b: MyNat
h: succ a ≤ bsucc a ≤ ba, b: MyNat
h: succ a ≤ b
left.hbcsucc a ≤ bGoals accomplished! 🐙a, b: MyNat
h: succ a ≤ b
right¬b ≤ aa, b: MyNat
h: succ a ≤ b
right¬b ≤ aa, b: MyNat
h: succ a ≤ b
nh: b ≤ a
rightFalsea, b: MyNat
h: succ a ≤ b
nh: b ≤ a
righta = succ aa, b: MyNat
h: succ a ≤ b
nh: b ≤ a
right.haba ≤ succ aa, b: MyNat
h: succ a ≤ b
nh: b ≤ asucc a ≤ aa, b: MyNat
h: succ a ≤ b
nh: b ≤ a
right.hbasucc a ≤ aGoals accomplished! 🐙Goals accomplished! 🐙
Now for the payoff.
Next up Level 17